II. Going Deeper: Complementarity & Native American Science
In his 1994 book Lighting the Seventh Fire – recently reissued as Blackfoot Physics – David Peat argued that Native American understandings of the natural world should indeed be considered scientific. All the topics to be covered in his study, he writes – “metaphysics and philosophy; the nature of space and time; the connection between language, thought, and perception; mathematics and its relationship to time; the ultimate nature of reality; causality and interconnection; astronomy and the movement of time; healing; the inner nature of animals, rocks, and plants; powers of animation; the importance of maintaining a balanced exchange of energy; of agriculture; of genetics; of considerations of ecology; the connection of the human being to the cosmos; and of the nature of processes of knowing” – can best be “gathered together under the general rubric of Indigenous science, a term I have used following the lead of Pam Colorado, Leroy Little Bear, and others.”
Having staked out his position, Peat immediately acknowledges its lonely quality: “While I am comfortable with this term,’ he adds, “I am also a part of the Western science tribe and I can already sense the kind of objections that its members would make: ‘Why do you use the term science? Native Americans don’t have any science in the real sense of the word. They don’t have an ordered system of investigation or rational theories of the universe as we do. Science is a specific and disciplined approach that was developed in the West. Indigenous people have traditions, folklore and mythology.’” 23 This general view is expressed with particular vigor by the biologist Edward O. Wilson:
“I mean no disrespect when I say that pre-scientific people, regardless of their innate genius, could never guess the nature of physical reality beyond the tiny sphere attainable by unaided common sense. Nothing else ever worked, no exercise from myth, revelation, art, trance, or any other conceivable means; and notwithstanding the emotional satisfaction it gives, mysticism, the strongest pre-scientific probe into the unknown, has yielded zero. No shaman’s spell or fast upon a sacred mountain can summon the electromagnetic spectrum. Prophets of the great religions were kept unaware of its existence, not because of a secretive god but because they lacked the hard-won knowledge of physics.” 24
Throughout his survey, Peat answers this objection on two levels: by demonstrating the central importance in the Native American tradition of the main attributes, as conventionally defined in the West, of a scientific approach – observation, experimentation, prediction, verification, replication, modeling, etc; and by showing that the radical differences in the conclusions drawn in the two traditions derive not from the application of superior or inferior techniques of inquiry but rather from the radically different philosophical premises involved. What, for example, really is the electromagnetic spectrum ‘summoned’ by Western physics: a complete and natural explanation of the whole phenomenon, or a way of describing aspects of it natural to, and selected by, a particular approach?
Interestingly, this latter view – the acceptance of the inherent partiality of scientific ‘truth’ – would not only describe Bohr’s position but a basic, guiding tenet of the Native American worldview: the irreducibility of the Great Spirit to any of Its manifestations, of Flux (dynamic wholeness) to the forms It engenders. Set against this modesty, Wilson’s supremacism strikes a doubly-harsh, and ironic, tone: in its assertion of the reducibility of natural reality to scientific law, harkening back to a classical, pre-complementarity Western view; in its championing of modern physics, blind to the major philosophical insight of that essentially disillusioning breakthrough. Yet this irony is further compounded by Bohr’s own anachronistic identification of Western science – a language of investigation – with that very classical phantom ‘science itself’, the only language of inquiry on offer – from the West, to the world.
An extended explanation for Bohr’s failure to cross this threshold is offered in the conclusion. Peat contrasts the exclusionary reflex, the either/or ‘nature’ of Western cultural perception, with the inclusive capacity characteristic of the Native American tradition:
“Our Western concept of nature is based on an evolutionary model. Left to the natural forces around them, things will ‘progress,’ getting better and better. Going along with this worldview is the need, when faced with alternatives, to decide which one is ‘better’ than the others. It goes without saying that when it comes to other people’s cultures we are generally the ones doing the measuring, and are supplying the yardstick as well! If two systems exist, both of which claim to be sciences, our natural tendency is to compare them, like the latest model autos, and see which one comes out on top.” 25
Thus, despite complementarity and the uncertainty principle, confronted with two radically different interpretations of the same phenomenon the predominant Western tendency is still to choose between them: judgment – ‘true’ or ‘false’, scientific or not – is passed in the case of sacred energy versus electromagnetism, natural selection or creative evolution, etc. Peat recalls being asked by Native American scientist Sa’ke’j Henderson, during a discussion of the qualities of medicinal plants, “what I thought a molecule was”:
“I offered him an explanation from modern science, that a molecule is a geometrical arrangement of atoms. Of course, he knew this kind of answer, but replied that a molecule was an alliance of spirits, and that when taken up into the body this alliance dissolves and takes up new configurations.” 26
To which Wilson would answer, wrong, you cannot possibly have obtained such an insight other than by the methods of my tradition, which has produced no evidence of any such ‘alliances.’ Note, however, that not only was Henderson familiar with Peat’s explanation, he made no effort to refute its relative validity, i.e. its internal self-consistency. Peat reacted initially by attempting to “bridge the gap between our two ways of thinking by calling on concepts from modern quantum physics”: “A molecule is an arrangement of atoms but it can also be represented by a wave function, which is, in a way, a sort of vibration of matter and energy. Maybe it is possible to think of the molecules that make up medicines as patterns of vibrations or more subtle forms of matter energy.” 27 It is indeed possible, he concluded, but to whose way of thinking would such a ‘bridging’ do justice?
“The more I thought about it the more I realized that ‘spirit’ cannot really be reduced to our words energy or matter as they are currently understood in Western science. The idea of using plants and herbs to cure sickness may at first sight appear close to our scientific idea of ‘medicines,’ suggesting that the powers of animal and vegetable substances lie in their biologically active molecules. But this cannot be the whole of the story. For example, the way these plants are collected is important, and before the medicine bag is used, the bag must be smudged with the purifying smoke of sage, sweet grass, tobacco, or cedar. Medicine itself has a life of its own. It is the tangible manifestation of alignments with the world of powers, energies, and spirits. Trying to understand how and why a particular plant is ‘medicine’ stretches our Western paradigm to the limit.” 28
Henderson’s approach, Peat suggests, is indicative of a general disposition within the Native American tradition to explore rather than judge, juxtapose rather than integrate, alternative interpretations:
“This [Western] desire to compare, to measure, and to categorize in terms of doing better and worse does not seem to be the natural way of doing things within the Indigenous world. … [I]n Labrador, there was a traditional Indigenous way to hunt beaver and one that the European trappers used. Today both methods are used by Native people, and there is no sense that one method is ‘better’ than the other, or that one should replace the other. Rather, both methods are used, side by side.” 29
Such an approach is, however, philosophic as well as pragmatic. Just as there are different ways of hunting animals, so there are different methods for obtaining reliable and useful knowledge of the natural world. But the source of being, the basis of both the knowledge derived and the methods employed, remains irreducible to formulation, opaque to the forms of perception it creates. You can capture the beaver, skin and dissect it, but you can never explain what you describe, reduce the whole to the parts (material and analytic) at your disposal. And, in fact, even this descriptive capacity is severely circumscribed. To examine any entity (animal, atom) in isolation is to dis-locate it from the flux that gave it form, the dynamic integrity it reflects: animal as manifestation of forest, forest of seasons, seasons of Earth, Earth of Cosmos, Cosmos of Creator, etc. To dissect is to reduce this integral reality to a separable display, divisible in space as ‘parts’ and time as cause-and-effect. The embedded, vital entity becomes a dead thing, a machine; an object of consuming interest. But whereas the actual consumption of meat for food in Native traditions is invariably located within a broader, non-reductionist context – an exchange or circling of energies within an interdependent Whole – the danger of unqualified reductionism is that it mistakes its own limits, the determining context of its model of inquiry, for those of the world it thus ‘comes out on top’ of every time.
For Bohr, such a view is blindness, a delusion of interpretative grandeur shattered by the profound evidence of dynamic wholeness at the atomic base of existence. The irreducible ‘mysteriousness’ of life, in short, is not some superstitious, pre-scientific obstacle in the way of Enlightenment, but a scientific premise from which rational, qualified conclusions can be drawn:
“[W]e should doubtless kill an animal if we tried to carry the investigation of its organs so far that we could tell the part played by the single atoms in vital functions. In every experiment on living organisms there must remain some uncertainty as regards the physical conditions to which they are subjected, and the idea suggests itself that the minimal freedom we must allow the organism will be just large enough to permit it, so to say, to hide its ultimate secrets from us. On this view, the very existence of life must in biology be regarded as an elementary fact that cannot be derived from ordinary mechanical physics. Indeed, the essential non-analyzability of atomic physics in mechanical terms presents a close analogy to the impossibility of a physical or chemical explanation of the peculiar functions characteristic of life.” 30
A science that sets out to ‘get to the bottom’ of life, or the lifeless mechanisms somehow ‘causing’ the ‘effect’ of existence, will necessarily differ, qualitatively, from a science seeking to explore the holistic, relational diversity of being and becoming. Western science is, of course, capable of developing in this direction, of reconfiguring itself to take full, consistent account of the holistic implications of complementarity. To achieve and sustain this conceptual resonance with other traditions, however, it will need to overcome not only deep-seated cultural prejudices and assumptions of superiority, but its own isolation, its compartmentalized dis-location in modern society. For Bohr, ‘science’ was naturally complementary to other dimensions of inquiry and experience – art, religion, politics, justice, economics, etc. From the Native American perspective, however, however, these categorical distinctions are unnatural and insupportable. Peat makes the point well:
“I believe that Indigenous science…is a disciplined approach to understanding and knowing, or rather, to the processes of coming to understanding and knowing. It has supporting metaphysics about the nature of reality, deals in systems of relationship, is concerned with the energies and processes within the universe, and provides a coherent scheme and basis for action. On the other hand, it is not possible to separate Indigenous science from other areas of life such as ethics, spirituality, metaphysics, social order, ceremony, and a variety of other aspects of daily existence. Thus it can never be a ‘branch’ or ‘department’ of knowledge, but rather remains separable from the cohesive whole, from a way of being and of coming-to-being.” 31
Perhaps it was this integral quality of Indigenous science, rather than any methodological or epistemological considerations, that blinded Bohr (and blinds Wilson) to its legitimacy; to, precisely, its separate existence, with its own institutions, bureaucracies, practices, hierarchies, terminology, specializations, etc. Taken together, as Peat stresses, these ‘indicators’ of ‘progress’ in science form the yardstick by which the ‘authenticity’ of other traditions are judged – as a rule, the stick with which they are beaten. The significance of Peat’s contribution, as a modern physicist seeking to change Western perceptions of science, is thus not primarily in demonstrating that the two approaches have important elements in common – important though it is to challenge the monopolization of key concepts such as ‘empiricism’, ‘observation,’ ‘experimentation,’ and ‘verification’ – but in recognizing the existence of complementary gauges of success. “Until now,” he writes toward the end of Blackfoot Physics, “I have been asking if Indigenous science is truly a science, and in doing so I assumed that only one yardstick exists that provides a standard set of definitions – Western science.” Answering ‘yes’ to the question thus phrased, however, is “not to question whether Indigenous science exists in its own right”:
“As far as Indigenous people are concerned, there is no need for them to justify their spirituality, their traditions, or their science by reference to anything external to their society. Indigenous science does not need to explain itself to anyone. It has no need to compare or authenticate itself against the standard of Western science.” 32
In a concise introductory summation of what he calls the ‘Native American paradigm’, Leroy Little Bear comments:
“Science has been and can be defined many different ways depending on who is doing the defining. But the one thing that is certain is that ‘science’ is culturally relative. … Scientific facts…are as much a product of the observer’s human nature as they are of an underlying reality. … If science is a search for reality and if science is a search for knowledge at the leading edge of the humanly knowable, then there are ‘sciences’ other than the Western… One of these other sciences is Native American science.” 33
The need for validation is one thing, however, and the desire for constructive dialogue another. “The Native American paradigm,” Little Bear writes, “is comprised of and includes ideas of constant motion and flux, existence consisting of energy waves, interrelationships, all things being animate, space/place, renewal, and all things being imbued with spirit.” This basic framework is described by the same author as “incomprehensible to most Westerners”, principally because of its non-reductionist framework in which “measurement is only one of many factors to be considered.” 34
Most , perhaps, but not all; and not inevitably. Complementarity is based on a recognition of the radical limits of measurement, an admission of the partial validity of quantitative analysis of natural processes; and in this contraction of the concept, new models and ideas, more resonant with Native American understandings, are opening up. In quantum physics, for example, measurement no longer describes the deterministic, cause-and-effect relationships and processes central to classical theory; rather, quantitative indicators are obtained of the non-deterministic, probabilistic quality of atomic phenomena. On the macroscale – as we’ll note in our consideration of chaos theory – similarly non-deterministic qualities of flux and form are the focus of intense study, with the role of measurement again changing from validation of a predictive reductionist hypothesis to the modeling of the role of unpredictability, spontaneity and randomness in systematic change and evolution. Such measurement, in fact, exists on the border of quantity and quality, posing enormous technical and conceptual challenges. As the mathematician Ian Stewart writes:
“One of the most striking features of recent mathematics has been its emphasis on general principles and abstract structures – on the qualitative rather than the quantitative. The great physicist Ernest Rutherford once remarked that ‘qualitative is just poor quantitative,’ but that attitude no longer makes sense. To turn Rutherford’s dictum on its head, quantitative is just poor qualitative. … We will never understand the growth of a tree or the dunes in the desert if we try to reduce of all nature’s freedom to restrictive mathematical schemes. The time is ripe for the development of a new kind of mathematics, one that possesses the kind of intellectual rigor that was the real point of Rutherford’s criticism of sloppy qualitative reasoning, but has far more conceptual flexibility. We need an effective mathematical theory of form, which is why I call my dream [of a new math] ‘morphomatics.’” 35
In classical Western science, measurement was important not in itself but because of its assumed reflection of the immutable, eternal laws underlying, and ultimately determining, natural phenomena. As Leroy Little Bear observes, this assumption is alien to the Native American paradigm: “For Einstein and Western science, creation and existence were made in a certain way by God and will always remain the same; everything and anything in creation just needs to be discovered by humans. Nothing is certain unless it can be referred to as a regular pattern after long-term observation. But, for the Native American, even regularities are subject to change. Native Americans never claim regularities as laws, or as finalities. The only constant is change.” 36 This, of course, was precisely why Einstein was philosophically repulsed by the ‘new physics’; the acausality, randomness and unpredictability it perceived in the quantum realm seemed to him lawless, anarchic, sacrilegious. But as the iron grip of physical law was relaxed, new, more organic conceptions of the relationship between law and reality became possible. A striking recent example is The Life of the Cosmos by the physicist Lee Smolin:
“The laws of nature themselves, like the biological species, may not be eternal categories, but rather the creations of natural processes occurring in time. There will be reasons why the laws of physics are what they are, but these reasons may be partly historical and contingent, as in the case of biology. … [T]he desire to understand the world in terms of a naïve and radical atomism in which elementary particles carry forever fixed properties, independent of the history or shape of the universe, perpetuates a now archaic view of the world. It suggests a kind of nostalgia for the absolute point of view, a way of seeing the world that was lost when the Newtonian conception of space and time was overthrown.” 37
Now, can a recognition of, and dialogue with, other paradigms help Western science meet these challenges? The Pueblo science writer and educator Gregory Cajete suggests that, “with the creative influence of chaos theory and quantum physics, a new scientific cultural metaphor has begin to take hold” in the West. “The insights of this new science,” he continues, “parallel the vision of the world long held in Indigenous spiritual traditions”:
“Because of this undeniable parallel, Indigenous thought has the potential to inform a contemporary understanding of chaos. Such understanding allows modern consciousness to encompass the primal wisdom of Indigenous thought and with this to understand the fallacy of scientific and societal control. The modern obsession of being in control and the dream of eliminating uncertainty through control of nature, which is the underlying philosophical premise of Western science, must give way to the reality of moving creatively with the flow of events, which is the true reality of the universe.” 38
As we have seen, however, Western scientists are deeply divided in their response to such claims. Some, such as David Bohm, strongly echo Cajete’s viewpoint:
“Understanding is now valued as the means to predict, control, and manipulate things. Of course, beginning with Francis Bacon, this has always been important but never so dominant as today. … This leads us to focus on particular problems, even when they are significantly related to a broader context. As a result, we fail to notice the unforeseen consequences, which cannot always be dealt with in terms of a fragmentary mode of thought. … For example, by exploring natural resources in a fragmentary manner, society has brought about the destruction of forests and agricultural lands, created deserts, and even threatens the melting of the ice caps. … Of course, many people think that solving these sorts of problems is only a matter of studying ecology or some other specialty. Certainly ecology does begin to acknowledge the complex dependence of each activity on the whole context. But really the problem is as much one of economics as it is of ecology, and this leads on to politics, and to the structure of society and the nature of human beings in general. The key issue is this: How is it possible to subject all these factors to prediction and control in order to manipulate the system and bring about good order? Clearly this is an impossible demand. … [H]ow can science lead human beings to control themselves? How do scientists propose to control hatred between nations, religions, and ideologies when science itself is fundamentally limited and controlled by these very things?” 39
Many others, though, enthusiastically endorse E. O. Wilson’s triumphalist vision of reductionism, his conviction that, far from having been rendered ‘naïve’ or ‘archaic’, it now stands on the threshold of a glorious culmination:
“The legacy of the Enlightenment is the belief that entirely on our own we can know, and in knowing, understand, and in understanding, choose wisely. This self-confidence has risen with the exponential growth of scientific knowledge, which is being woven into an increasingly full explanatory web of cause-and-effect. … We now understand where humanity came from, and what it is. Homo sapiens, like the rest of life, was self-assembled. … Human autonomy having thus been recognized, we should now feel more disposed to reflect on where we wish to go. In such an endeavor it is not enough to say that history unfolds by processes too complex for reductionist analysis. That is the white flag of the secular intellectual, the lazy modernist equivalent of the Will of God. … We have begun to probe the foundations of human nature, revealing what people most need, and why.” 40
While Bohm and Wilson apparently stand worlds apart, Bohm here makes exactly the same mistake, hesitates on the same threshold, as Bohr: ‘science,’ he claims, has been interested in the control and domination of nature “beginning with Francis Bacon.” From the millennia-long perspective of Chinese or Native American science, this is an odd ‘beginning’ indeed. How, he asks, do “scientists” plan to “control” social tensions when “science itself” is socially “limited and controlled”. Cajete and Leroy Little Bear might agree with this last claim: science is indeed of, not above, society, just as society is of, not above, the natural world. But, precisely because the science they are practicing is integrally related to a far greater, interdependent Whole, Native American scientists do not seek manipulative control over others: the whole philosophical and experiential basis of their methods and language of inquiry mitigates profoundly against such delusions of grandeur.
In the last years of his life, under the direct influence of the Native American paradigm, Bohm finally made this move into ‘deep complementary’: the leap from the ‘world of science’ to a world of sciences. The decisive factor seems to have been the radical difference in the language of inquiry in the two traditions.
For Bohr, as we have seen, the language of science, however esoteric or abstract, was ultimately rooted in the concepts and scales of everyday, commonplace communication; and that language, he assumed, was essentially the same in every cultural complex. In his 1980 book Wholeness and the Implicate Order, however, Bohm came to the drastic conclusion that ‘science’ could never evolve beyond a simplistic reductionism unless ‘language’ evolved beyond its own internal reductionism: the artificial grammatical separation of the world into ‘subject’ and ‘object’, ‘verb’ and ‘noun.’ Asking “whether there are any features of the commonly used language which tend to sustain and propagate” the endemic fragmentation of reality, Bohm comments:
“A cursory examination shows that a very important feature of this kind is the subject-verb-object structure of sentences… This structure implies that all action arises in a separate entity, the subject, and that, in cases described by a transitive verb, this action crosses over the space between them to another separate entity, the object. … This is a pervasive structure, leading in the whole of life to a function of thought tending to divide things into separate entities, such entities being conceived of as essentially fixed and static in their nature. When this view is carried to its limit, one arrives at the prevailing scientific world view, in which everything is regarded as ultimately constituted out of a set of basic particles of fixed nature.” 41
In order to ‘unfix’ nature from this perspective – to ‘unpin’ the ‘butterfly’ – language itself would have to acquire free movement. This revolution, which Bohm proposed moving towards through an alternative language model he called the ‘rheomode’ (from the Greek verb rheo, ‘to flow’), would change “the syntax and grammatical form of language…so as to give a basic role to the verb rather than the noun.” Why was this so important? Because “the verb describes actions and movements which flow into each other and merge, without sharp separations or breaks. Moreover, since movements are in general ways always themselves changing, they have in themselves no permanent pattern of fixed form with which separately existent things could be identified.” Such a language, Bohm added, was needed to adequately express the “overall world view” he was struggling towards, “in which movement is, in effect, taken as a primary notion, while apparently static and separately existent things are seen as relatively invariant states of continuing movement”. 42
Following the release of Wholeness and the Implicate Order, Bohm and a small group of colleagues and supporters worked hard to develop the scheme beyond these broad, ambitious outlines. After a while, however, as David Peat remembers, “Bohm no longer pursued the rheomode”: his “ideas…were intriguing, yet the response he got from most professional linguists…was discouraging; they found his ideas naïve and unconvincing.” In addition to this cool reception, the rheomode group “began to use…verbs as stand-ins for nouns, defeating the very purpose for which the language [model] had been created. Transforming language was a project more difficult than Bohm had anticipated.” 43
Fortunately for the frustrated Western physicist, however, he soon encountered something else he hadn’t anticipated – a set of living languages brilliantly reflecting and expressing the undivided flow of natural movement:
“In the last year of his life…Bohm met with a group of Native Americans who were all speakers of the strongly verb-based Algonquian family languages. (The participants included Blackfoot, MicMaq, Cheyenne, Ojibwa, and Soto.) Bohm was struck by their process-based vision of the world and by the way they themselves viewed the role played by their language. Here was a society, it seemed to him, that practiced what he had envisioned for his rheomode.” 44
If scientific concepts are necessarily, integrally connected to a broader language and deeper worldview, then radically different languages and worldviews will necessarily generate complementary sciences. The revelation both exhilarated and depressed Bohm and his wife:
“As the discussions continued, Bohm learned [more] about the process-based worldview… Everything is said to be in flux, and this constant change is reflected in their…language… Both Bohm and Saral were moved by the deeply spiritual outlook of the participants. Speaking about the arrival of the first Europeans, Bohm remarked, ‘It would have been better if we had never come.’” 45
The participants themselves, however, seemed glad that this newcomer had moved so humbly across the border of scientific imperialism: “Bohm died a few weeks before the second of these circles, held in Banff, Alberta. When the…[group convened] on the first evening, it was discovered that, by chance, one chair had been left vacant. This was Bohm’s chair, and several of the speakers addressed him directly as if his spirit were present.” 46
However impressed Bohm was by the Algonquin perspective, his next step would not have been to simply adopt the language, to somehow leap over his own tradition into a brave new worldview. He stood not on the brink of a conversion but rather a dialogue bound deeply to affect – in a creative, non-formulaic manner – his own approach.
How, more specifically, might such a dialogue proceed?