Notes and References
1. Sean Howard, ‘Nanotechnology and Mass Destruction: the Need for an Inner Space Treaty’, Disarmament Diplomacy No. 65 (July/August 2002), pp. 3-16.
2. The decades-long “change from the importance of the big bang to the importance of accuracy” was emphasised by Edward Teller in a paper written shortly after the 1991 Gulf War: “Shall one combine the newly acquired accuracy with smaller nuclear weapons (perhaps even of yields of a few tons) to be used against modern weapons such as tanks and submarines?” Edward Teller, American Journal of Physics, Vol.59, October 1991, p.873.
3. Depleted uranium (DU) munitions were primarily designed to stop a massive tank attack by the nuclear-armed Warsaw Pact Organisation. Their first use during the 1991 Gulf War broke a 46-year long taboo against the intentional use or induction of radioactivity in combat.
4. Most literature related to earth-penetrating weapons refers to devices with a yield in the low kiloton range. However, some experts have argued that much less powerful devices would suffice: “A small-yield nuclear weapon (15 tons or less) would be militarily useful: it could destroy deeply buried targets that otherwise could be readily reparable, and it would do so without placing US forces at greater risk. It would also be politically useful, serving notice to the proliferant that the United States will engage it and, if necessary, escalate the conflict.” Kathleen C. Bailey, ‘Proliferation: Implications for US Deterrence’, in Kathleen C. Bailey, ed., Weapons of Mass Destruction: Costs Versus Benefits, Manohar, New Delhi, 1994, pp. 141-142.
5. The smaller an electro-mechanical system, the higher its resistance to acceleration. This explains why it is possible to design a shock-proof wrist-watch, while a wall-clock falling on the ground is certain to be damaged.
6. Pictures of the 50-micrometer gears of Sandia’s intricate safety lock for nuclear missiles were published in Science, Vol.282, October 16, 1998, pp. 402-405.
7. Richard E. Smalley, ‘Of chemistry, love and nanobots’, Scientific American, Vol.285, September 2001, pp. 68-69.
8. Keith W. Brendley and Randall Steeb, ‘Military applications of microelectromechanical systems’, Report MR-175-OSD/AF/A, RAND Corporation, 1993, 57 pp. Johndale C. Solem, ‘On the mobility of military microrobots’, Report LA-12133, Los Alamos National Laboratory, July 1991, 17 pp.
9. Using the language of Endnote No. 7, one can say that photons (i.e., particles of light) are, contrary to atoms, neither “fat” nor “sticky”: they can be concentrated in unlimited numbers so that a very localised and brief light pulse can contain huge amounts of energy – so large that a table-top superlaser can initiate nuclear reactions such as fission or fusion.
10. As routinely defined by the US Department of Defense: “A nuclear weapon is one-point safe if, when the high explosive (HE) is initiated and detonated at any single point, the probability of producing a nuclear yield exceeding four pounds of trinitrotoluene (TNT) equivalent is less than one in a million.” See, for example, http://www.dtic.mil/whs/directives/corres/ pdf/3150m_1296/p31502m.pdf.
11. André Gsponer and Jean-Pierre Hurni, The Physical Principles of Thermonuclear Explosives, Inertial Confinement Fusion, and the Quest for Fourth Generation Nuclear Weapons, INESAP Technical Report No.1, Presented at the 1997 INESAP Conference, Shanghai, China, 8-10 September 1997, Seventh edition, September 2000, ISBN: 3-9333071-02-X, 195 pp.
12. André Gsponer, Jean-Pierre Hurni, and Bruno Vitale, ‘A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons’, Report ISRI-02-07, due to appear in the Proceedings of the 4th Int. Conf. of the Yugoslav Nuclear Society, Belgrade, Sep.30 – Oct.4, 2002, 14 pp. Available at http://arXiv.org/abs/physics/0210071.
Dr. André Gsponer is Director of the Geneva-based Independent Scientific Research Institute (ISRI), founded in 1982 to study the arms-control/disarmament implications of emerging technologies. The author thanks his colleagues at ISRI for their research and comments related to this paper.